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Abstract. Heavy metals have a major contribution to biosphere pollution due to toxicity. The detection 

and monitoring of the environmental agents in soil, water and air is very important for the general health 

of humans and animals. It has been recently shown that electrochemical techniques such as differential 

pulse voltammetry (DPV) and square wave anodic stripping voltammetry (SWASV) using modified 

electrodes are very attractive methods for detecting heavy metals. The aim of this paper is to demonstrate 

the potential of hydrothermal process combined with electrochemical techniques to obtain modified 

electrodes based on functionalized carbon nanotubes (CNTs) and polyaniline (PANI) for metals 

detection. Commercial multi-walled carbon nanotubes (MWCNT) were functionalized by a mixture of 

HNO3/H2SO4 and further used for hydrothermal synthesis of CNT-PANI composites with different mass 

ratios. The resulted powders were analyzed by spectral (Fourier-Transform Infrared Spectroscopy) and 

thermal (Differential Scanning Calorimetry) methods, and then dispersed in a surfactant/electrolyte 

solution for preliminary electrochemical experiments (cyclic voltammetry, CV and DPV) to obtain 

modified electrodes. The influence of the CNT: PANI mass ratio and the synthesis time on the formation 

of composites with the desired structural and electrochemical properties were studied. It was found that 

CNT-PANI composite powder having mass ratio 1:4 and synthesis time 3h has the best structural and 

thermal characteristics and formed a weakly conductive film on the surface of the glassy carbon 

electrode. Preliminary electrochemical tests revealed the electroactive forms of polyaniline, through the 

presence of characteristic oxidation peaks but also reduction peaks, corresponding to reversible redox 

reactions, demonstrating that glassy carbon electrode has been electrochemically modified with CNT-

PANI coatings. Further studies will be conducted to test the potential application of glassy carbon 

electrode modified with CNT-PANI coatings as electrochemical sensor for heavy metals detection. 
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1. Introduction 
Heavy metals have a major contribution to biosphere pollution due to toxicity. The detection and 

monitoring of the environmental agents in soil, water and air is very important for the general health of 

humans and animals. Current methods for detecting metals that include spectral methods such as atomic 

absorption spectroscopy (AAS), inductively coupled plasma optical emission spectrometry (ICP-OES) 

and inductively coupled plasma mass spectrometry (ICP-MS) are sensitive and selective. These 

techniques also have disadvantages: sophisticated tools, high maintenance costs. Therefore, it is 

necessary to develop a sensory, sensitive, selective, portable platform for heavy metals [1]. 

It has recently been shown that electrochemical techniques such as differential pulse voltammetry 

(DPV) and square wave anodic stripping voltammetry (SWASV) using modified electrodes are 

alternative and very attractive methods for detecting heavy metals [2]. 

Carbon nanotubes (CNTs) become materials used to modify electrodes due to their unique properties, 

such as the increased surface area of the electrode, rapid electron transfer, significant mechanical 

strength and good chemical stability.  Recent  studies  have  shown  that CNTs provide strong electro- 
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catalytic activity [3]. CNT-modified electrodes promote electron transfer due to their conductivity and 

mechanical properties. 

Also, conductive polymers such as polyaniline [4,5] polyacetylene, polypyrrole, polythiophene, 

polyphenols have been extensively studied due to their unique physical, chemical, and electrical 

properties: good processability, environmental stability, low cost, easily synthesized, charge transfer 

ability, adaptation of properties by doping, etc. [1]. Among these, PANI is one of the most important 

polymers, due to its stability and electrical conductivity. Moreover, it exhibits significant redox behavior. 

The conductive form of polyaniline is protonated poly-emeraldine or green poly-emeraldine salt, with a 

conductivity of about 15 S*cm-1. Composites based on conductive polymers and CNT have synergistic 

effects and have been studied for various applications such as lithium-ion batteries, supercapacitors, 

catalysts, solar cells, nanodevices, chemical sensors and biosensors [6,7]. Numerous researchers have 

also used the beneficial, unique and attractive properties resulting from the combination of conductive 

polymers with CNTs for the detection of heavy metals [1]. The formation of conductive polymer-CNT 

composites takes place through π-π interactions between the two components, which favors the 

improvement of electrochemical performance. Z. Wang et al [8] studied the performance of the glassy 

carbon electrode (GCE) coated with a nanocomposite based on multi-walled carbon nanotubes 

(MWCNT) and PANI to be used as an electrochemical sensor for the determination of Pb (II) ions. 

In the present study, CNT-PANI composites were prepared by the hydrothermal method in mild 

synthesis conditions (aqueous solution, temperature <100°C and moderate pressure ~ 60 atm), as 

previously reported by us in [9] and tested to obtain CNT-PANI thin films on glassy carbon electrode 

(GCE) by electrochemical methods such as cyclic voltammetry (CV) and differential pulse voltammetry 

(DPV). The aim of this paper is to demonstrate the potential of hydrothermal process combined with 

electrochemical techniques to obtain modified electrodes based on functionalized carbon nanotubes 

(CNT) and electroactive polymers such as Polyaniline (PANI) for metals detection. For this purpose, 

commercial nanotubes (MWCNT) were functionalized by a mixture of HNO3/H2SO4 and further used 

for hydrothermal synthesis of CNT-PANI composites with different mass ratios. The resulted powders 

were dispersed in a surfactant/electrolyte solution for preliminary electrochemical experiments (CV and 

DPV) meant to lead to modified electrodes. 

 

2. Materials and methods  
2.1. Materials  

Multi-walled carbon nanotubes (MWCNT) having outer diameter of 10 nm, inner diameter of 4.5 

nm, and length of 4 μm were purchased from Sigma Aldrich; commercial Polyaniline (emeraldine base, 

Mw ~ 10,000) – PANI (Sigma Aldrich) has been used. Sodium hydroxide (NaOH) in solid form was 

also purchased from Sigma Aldrich. 95-97%; sulfuric acid is Merck reagent, 65% nitric acid and 35% 

hydrochloric acid are from LACH-NER. The solutions used for titration, 0.05 M NaOH and 0.05 M HCl, 

were prepared from solid sodium hydroxide and concentrated hydrochloric acid. Sodium dodecyl-

benzenesulfonate (SDBS), from Merck, was used as a surfactant as a 2 M aqueous solution. Potassium 

ferrocyanide K4[Fe(CN)6]*3H2O (from Merck) was used in the electrochemical experiments as a 0.1 M 

aqueous solution. 

 

2.2. CNT functionalization 

MWCNTs were purified by heat treatment in a CARBOLITE oven for 2 h at a temperature of 400ºC 

with a heating rate of 10ºC / min and cooling to room temperature. Chemical oxidation was performed 

using a mixture of nitric acid and sulfuric acid. To avoid destruction of the nanotubes, the solutions of 

nitric acid and sulfuric acid used for the oxidation of the nanotubes had the following concentrations: 

4.0 M and 10.0 M, respectively. Functionalization of MWCNTs was performed according to the 

following method: heat-treated MWCNT powder was introduced into a mixture of 4.0 M HNO3 and 

10.0 M H2SO4 (1: 3 volume ratio).The solution was magnetically stirred for 8 h at room temperature. 

The resulting suspension was washed with distilled water under magnetic stirring, followed by 
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sedimentation and settling. The resulted sediment was further subjected to successive washes (in the 

same way: stirring, sedimentation, settling) until the pH of the suspension was ~ 5.5. Subsequently, the 

CNT slurry was freeze-dried in Martin Christ Alpha 1-2 LD Plus equipment. 

 

2.3. Determination of the degree of functionalization of CNT by acid-base titration 

The titration method proposed by Boehm is used to determine the relative concentration of functional 

groups on the MWCNT surface. In a typical experiment, 2 mg of oxidized MWCNT are immersed in 20 

mL of 0.05 M NaOH solution. The mixture is ultrasonicated for 5 min in a closed flask and then stirred 

continuously for 24 h to reach equilibrium. To determine the excess of NaOH after the acid-base reaction 

of the MWCNT functionalized with the NaOH solution, the solution is slowly titrated with 0.05 M HCl 

to neutral pH. The concentration of acidic groups on the surface of MWCNT (mmol / gram of MWCNT) 

is equal to the amount of reacted NaOH [10]. 

 

2.4. Hydrothermal synthesis of composites based on functionalized CNT and PANI  

Functionalized CNT prepared as described above, was dispersed in water and mixed under magnetic 

stirring with commercial PANI. The mixture was then brought to neutral pH with 0.1M NaOH and placed 

in the synthesis vessel. The composite powders with different mass ratios based on functionalized 

MWCNT and PANI were obtained by the hydrothermal process at 60 atm and 40°C (Table 1). The 

products resulting from the synthesis were freeze-dried at -50°C and 0.025 mbar. 

 

2.5.Structural and thermal characterization of functionalized CNT, respectively CNT-PANI 

Structural analysis by spectral methods: The presence of functional groups was identified by Fourier 

transform infrared spectroscopy (FT-IR), using an ABB MB 3000 FT-IR spectrometer (Canada), 

equipped with EasiDiff device for powders analysis. The solid sample (powders presented in Table 1) is 

mixed with KBr so that its concentration in the mixture is 1% gravimetric. The mixture thus obtained is 

ground for 10-15 min to obtain fine, homogeneous particles. For data acquisition, 64 scans were made at 

a resolution of 4 cm-1 in the range of 550 - 4000 cm-1 in transmittance mode. Experimental data processing 

was performed using Horizon MBTM FT-IR software. 

Thermal analysis: The study of the thermal transformations due to the chemical reactions was 

performed by differential scanning calorimetry (DSC) using a NETZSCH DSC 200 F3 differential 

scanning calorimeter in Ar atmosphere. One has worked in Al crucibles up to a maximum temperature of 

590°C, with a heating rate of 10 K / min and cooling rate of 30 K / min, respectively. The processing of 

the experimental data was performed with the help of the PROTEUS ANALYSIS software. 

 

2.6. Preliminary electrochemical characterization of CNT-PANI 

The electrochemical measurements of the stable suspensions based on CNT, respectively CNT-PANI 

were performed with a PGSTAT 12 Autolab potentiostat (Methrom) at room temperature. The 

potentiostat is connected to a computer endowed with NOVA 2.1 software for selecting parameters and 

collecting data of the electrochemical methods used (CV, DPV). 

The electrochemical cell used was a conventional cell with three electrodes: a working electrode - 

glassy carbon disk (diameter 3 mm), a reference electrode Ag / AgCl in saturated 3M KCl solution and a 

platinum counter-electrode. The working electrode (GCE) was cleaned by sanding on felt with diamond 

paste (0.25μm) after each recording. 

The electrochemical experiments were performed according to the following protocol: 1) cyclic 

voltammetry in potassium ferrocyanide solution K4[Fe(CN)6] 0.1M, scan rate of 100 mV / s; ε0 = - 0.3V; 

ε1 = + 0.7V; ε2 = - 0.3V (preliminary experiment for the study of the redox behavior of K4[Fe(CN)6] in 

the presence of unmodified GCE; 2) cyclic voltammetry with a scan rate of 0.1 V / s; ε0 = 0; ε1 = + 3V; 

ε2 = - 3V in 0.2 M SDBS surfactant / electrolyte support solution; 3) cyclic voltammetry with a scan rate 

of 0.1 V / s; ε0 = 0; ε1 = + 3V; ε2 = - 3V in functionalized carbon nanotube suspension (NT-1), in the 

presence of SDBS; 4) differential pulse voltammetry with a scan rate of 0.01 V / s with a modulation 
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amplitude of 0.025 V and a modulation time of 0.5 s in the anodic direction (from 0V to 3V) and then in 

the cathodic direction (from 0V to -3V) in functionalized carbon nanotube suspension (NT-1), in the 

presence of SDBS; 5) cyclic voltammetry with a scan rate of 0.1 V / s; ε0 = 0; ε1 = + 3V; ε2 = - 3V; 20 

scans in functionalized carbon nanotube suspension, in the presence of SDBS; 6) transfer of the GC 

electrode modified with functionalized carbon nanotubes in ferrocyanide solution for cyclic voltammetry, 

scan rate of 0.1 V / s; ε0 = - 0.3V; ε1 = + 0.7V; ε2 = - 0.3V. Similarly, steps 3-6 were repeated for CNT-

PANI composites (stable suspensions of NTP-1 to NTP-4 powder samples, (Table 1)). 

 

3. Results and discussions  
The investigated samples, based on functionalized CNT and PANI are presented in the table below: 

 

 

Table 1. Powdered materials based on functionalized CNT, 

 respectively functionalized CNT and PANI 
Crt. 

no 
Sample name 

CNT : PANI 

mass ratio 
Synthesis time, h pH Sample type 

1 NT-1 - - 5.5 Chemically oxidized MWCNT 

2 NT-2 - - 5.5 Chemically oxidized MWCNT 

3 NTP-1 1 : 2 3 7 
Hydrothermally synthesized CNT-PANI at 

40°C / 60 atm 

4 NTP-2 1 : 4 3 7 
Hydrothermally synthesized CNT-PANI at 

40°C / 60 atm 

5 NTP-3 1 : 2 1 7 
Hydrothermally synthesized CNT-PANI at 

40°C / 60 atm 

6 NTP-4 1 : 4 1 7 
Hydrothermally synthesized CNT-PANI at 

40°C / 60 atm 

 

 

3.1. Structural analysis by spectral methods (FT-IR) 

The influence of the reaction parameters on the formation of composite structures based on MWCNT 

and PANI was studied using Fourier-transform Infrared Spectroscopy (FT-IR). Pure PANI and 

functionalized CNT were also analyzed for comparative reasons. Thus, Figure 1a shows the FT-IR spectra 

of the functionalized MWCNT samples (pH = 5.5) and Figure 1b - the FT-IR spectra of the commercial 

PANI. In the Figure 2, the FT-IR spectra of the composite materials based on MWCNT and PANI 

(polyaniline) are presented. 

The FT-IR spectra of chemically oxidized CNTs show two absorption maxima, barely visible, at 

1597-1550 cm− 1 and 1686-1650 cm− 1, attributed to the stretching mode of the C = C bond. The number 

of surface carboxyl groups, calculated based on acid-base titration is 0.97 g / mmol, which demonstrates 

a slight functionalization on the CNT surface, in accordance with the results of the spectral analysis.  

In the PANI spectrum, the typical vibration bands from 1593 cm− 1 and 1508 cm-1 belong to the C = 

C bonds of the quinoid rings, while the maxima from 1499 cm– 1, 1302 cm− 1 and 1242 cm− 1 are assigned 

to C = C bonds in benzene rings, C-N bond in quinoid rings and C-N bond in benzene rings, respectively. 

Compared to PANI, in the PANI / CNT spectra, two changes can be observed: i) the displacement of the 

absorption maximum, towards higher wave numbers for the CN bonds of the quinoid rings (1306-1308 

cm– 1) and ii) the maximum intensity ratio corresponding to the C = C bonds in the quinoid ring and the 

C = C bonds of the benzenoid rings increases with the decrease of the ratio between PANI and CNT. The 

shift to red is due to the π- π electronic interactions at the interface between PANI and CNT [11].  
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       a             b 

Figure 1. FT-IR spectra of: a) NT-1 and NT-2 powders 

(functionalized CNTs); b) commercial PANI 

 

 
 

3.2. Thermal analysis (DSC) 

The results obtained at thermal analysis are presented comparatively in Figure 3 (a, b, c) and Table 2.  

As observed in Figure 3a, the functionalized CNT sample (NT-1) decomposes into CO2 at 435.5 °C, 

which proves the functionalization of CNT by the presence of carboxyl groups (COOH) on the surface. 

In the case of polyaniline (Figure 3d), the peak corresponding to the water loss or unreacted monomer is 

observed at 92.2°C, while the decomposition peak of the organic phase can be observed at 316.6 °C.  

In the case of composite samples (Figure 3b) with CNT-PANI mass ratio=1:2 (NTP-1 and 3) the 

decomposition of the organic phase can be observed at 368.6°C and 352.5°C, respectively. The 

endothermic peak from 443-489.9 °C, due to carbon nanotubes can be also found, but the enthalpy (peak 

area) is very small in the case of NTP-1. It should be noted that in the case of the NTP-2 sample (Figure 

3c), synthesized for 3h, CNT: PANI mass ratio = 1:4, the peak due to the loss of the organic phase 

disappears. This aspect could be explained by a better interaction of CNT with PANI, due to the fact that 

the hydrothermal reactions are diffusion-controlled processes [12]. Peak area corresponding to the 

decomposition of the organic phase is small in the case of NTP-4 sample (CNT: PANI mass ratio=1:4, 

synthesis time =1h). NTP-3 sample (Figure 3b), synthesized for 1h, with CNT: PANI mass ratio = 1: 2 

has the highest enthalpy (peak area) due to PANI decomposition, confirming the hypothesis that a longer 

synthesis time (3h) and a higher organic phase content leads to a better interaction of PANI with CNT. 

 

Figure 2. FT-IR spectra of 

CNT-PANI composite 

materials, compared to 

commercial PANI and 

functionalized CNT (NT-1) 
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Peaks observed between 165 and 169°C in all the composite powders correspond to a transition in 

PANI (endothermic affect at 177°C) which could be attributed to some changes in polymer chain [13]. 

 
Figure 3. DSC curves of a) NT-1 powder; b) NTP-1 and NTP-3 powders;  

c) NTP-2 and NTP-4 powders; d) commercial PANI 
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Table 2. Peak temperatures and enthalpies of functionalized CNT, CNT-PANI composites and PANI 

Crt. 

no 

Sample 

name 

CNT : PANI 

mass ratio 

Peak 1 Peak 2 Peak 3 Peak 4 

T1, °C ΔH1, J/g T2, °C 
ΔH2, 

J/g 
T3, °C 

ΔH3, 

J/g 
T4, °C ΔH4, J/g 

1 NT-1 - - -   - - 435.5 66.45 

2 NTP-1 1 : 2 82.1 197 168.9 45.75 368.6 174.8 443 20.63 

3 NTP-2 1 : 4 56.2 164.3 165.6 34.78 - - 454.6 65.04 

4 NTP-3 1 : 2 93.2 248.6 169 11.23 352.5 249.7 489.9 500.8 

5 NTP-4 1 : 4 84 181.2 166 42.4 312 53.59 479.1 424.2 

6 PANI - 92.2 63.13 177 8.88 316.6 186 - - 

 

 

Results obtained by FT-IR and DSC analysis of CNT-PANI composite powders shows that NTP-2 

sample synthesized for 3h, with CNT:PANI mass ratio = 1:4 has the best structural and thermal 

characteristics among all the composite materials investigated in this study. 

 

3.3.Preliminary electrochemical tests 

The electrochemical methods used for the preliminary characterization of hybrid materials based on 

CNT functionalized with PANI are: cyclic voltammetry (CV) with scan rate 0.1 V/s and differential pulse 

voltammetry (DPV) with scan rate of 0.01 V/s. Peaks were obtained both in the anodic and cathodic 

domain. The anodic and cathodic curves were recorded individually, starting from the stationary potential. 

Cyclic voltammetry (CV) is a dynamic electrochemical measurement where the potential is ramped 

linearly versus time. The responses are anodic and/or cathodic peak currents that are proportional to the 

concentration of the electroactive species. This technique is used for electrochemical characterization of 

working electrodes. Differential pulse voltammetry (DPV) is one of the main pulsed techniques used in 

biosensing. The main advantage exhibited by this technique is the low capacitive current, which can 

improve the sensitivity of the voltammetric procedures. Differential pulse voltammetry is usually applied 

in irreversible systems and in systems that present slow-reaction kinetics [14]. Figure 4 shows the CV 

curves of GC electrode modified with NT1, and NTP1 to NTP4 coatings, respectively. Two oxidation 

peaks can be observed for the GC electrode modified with NTP2: one located at ~ 0.6 V and the other at 

~ 1.8 V. The peak at 0.6 V could be attributed to the oxidation reaction of emeraldine (conductive form 

of PANI) in pernigraniline, while the 1.8 V peak may be due to the slow transfer of electrons between the 

two forms of PANI (emeraldine-pernigraniline) caused by the steric hindrance of the polymer chain 

(Figure 5) [15, 16].  

 

 

    
 

 

 

Figure 4. Cyclic 

voltammograms (CV) of GCE 

modified with the studied  

coatings (denoted as NT1, 

NTP1, NTP2, NTP3 and 

NTP4), in the potential 

 range -3V÷3V 
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Figure 5. a) the oxidation states of PANI [17]; b) example 

of CNT-PANI structure [11] 

 

In the reduction range a single peak at ~ -0.7 V is observed for all the modified electrodes. This peak 

could be justified by the presence of carbon nanotubes that increase PANI electroactivity by charge 

transfer reactions [17]. It is also known that chemically synthesized PANI has a reversible peak (ε 

cathodic = -0.7V corresponds to ε anodic = 1.8V) [18]. The results obtained by CV for GCE modified 

with NTP2 coating correlates well with the conclusions on NTP-2 composite powder, confirming the 

presence of the organic phase on GC modified electrode. 

Figure 6 shows the DPV curves of GC electrode modified with NT1, and NTP1 to NTP4 coatings, 

respectively. For electrodes modified with composite coatings (NTP1 to NTP4), an oxidation peak is 

observed at the potential of ~ 1.4 V, probably due to the oxidation reaction of emeraldine to pernigraniline, 

in accordance with the results obtained at cyclic voltammetry. In the reduction range all the GC modified 

electrodes have a main reduction peak at~ -0.6 V. The peak at -0.6V is shifted from cyclic voltammetry 

(-0.7V) because in the case of DPV the scan rate is lower, DPV being a more precise method, in which 

the Faradaic currents are better discriminated (electron transfer on and from the electrode).  

 

 
Figure 6. Differential pulse voltammetry (DPV) curves of glassy carbon electrode modified  

with the studied coatings in the: a) anodic range and b) cathodic range 
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Figure 7 shows the CV curves of 20 successive cycles for GC electrode modified with NT1, and NTP1 

to NTP4 coatings, respectively. The decrease of the current with the increase of the number of cycles can 

be observed. The transfer of the electrodes after their modification by successive cycles (Figure 8) was 

carried out in a solution of potassium ferrocyanide (K4[Fe(CN)6] (cyan curve). It can be observed that the 

signal of the electrode modified by successive cycles with NTP1 and NTP3 coatings, respectively, is 

changed compared to the bare glassy carbon electrode. The signal of the electrode modified with NT1 

coating shows a thinner film compared to the electrode modified with NTP1 and NTP3 coatings. 

 

 
a 

 
b 

 
c 

 
d 

 
e 

Figure 7. Cyclic voltammetry curves of glassy carbon electrode (GC) modified with the studied 

coatings, in the potential range -3V ÷ 3V, 20 cycles 
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The electrodes modified with NTP2 and NTP4 coatings have currents with the lowest intensity, 

which indicates a poorly conductive film. It has been observed that, as the anodic potential limit is more 

positive, the potassium ferrocyanide signal is more flattened and lower intensity currents are obtained, 

which indicates the formation of an insulating film. 

 

 
     Figure 8. Cyclic voltammograms of the potassium 

     ferrocyanide solution at bare GCE (cyan curve) and 

   modified with the studied coatings 

 

4. Conclusions  
In this paper, composite materials based on functionalized carbon nanotubes and polyaniline were 

synthesized, in order to obtain glassy carbon electrode modified with CNT – polymer coatings. The 

influence of the CNT: PANI mass ratio and the synthesis time on the formation of composites with the 

desired structural and electrochemical properties were studied. It was found that the NTP-2 powder, with 

CNT: PANI mass ratio 1: 4, and 3h synthesis time, represents the best choice, having the best structural 

and thermal characteristics and forming a weakly conductive film on the surface of the glassy carbon 

electrode. Preliminary electrochemical tests revealed the electroactive forms of polyaniline, through the 

presence of characteristic oxidation peaks but also reduction peaks, corresponding to reversible redox 

reactions, demonstrating that glassy carbon electrode has been modified by electrochemical methods 

(CV and DPV) with coatings of CNT-PANI.  

The results obtained by CV for GCE modified with NTP2 coating correlates well with the 

conclusions on NTP-2 composite powder, confirming the presence of the organic phase on GC modified 

electrode. 

Further studies will be conducted to test the potential application of glassy carbon electrode modified 

with CNT-PANI thin films as electrochemical sensor for heavy metals detection. 

 

Acknowledgments: This work was performed through the Core Program, carried out with the support 

of MCI, project no. PN19190501/2019-2022, “Innovative electrochemical processes with applications 

in surface engineering and non-ferrous metal recovery”. The authors thank to dr. eng. Marian-Laurentiu 

Tatu for electrochemical measurements and fruitful discussions on electrochemistry. 

 

References 

 1.DESHMUKH, M. A., SHIRSAT, M. D., RAMANAVICIENE, A., RAMANAVICIUS, A. Composites Based on 

Conducting Polymers and Carbon Nanomaterials for Heavy Metal Ion Sensing (Review). Crit. Rev. 

Anal. Chem. 48, 2018, 293–304. 

2.WAHEED, A., MANSHA, M., ULLAH, N. Nanomaterials-based electrochemical detection of heavy metals 

in water: Current status, challenges and future direction. TrAC - Trends Anal. Chem. 105, 2018, 37–51. 

https://revmaterialeplastice.ro/


MATERIALE  PLASTICE                                                                                                                                                                
https://revmaterialeplastice.ro 

https://doi.org/10.37358/Mat.Plast.1964 

Mater. Plast., 57 (3), 2020, 238-248                                                           248                                  https://doi.org/10.37358/MP.20.3.5396                                                              
    

 

 

3.XIE, F. ET AL. Carbon-based nanomaterials – A promising electrochemical sensor toward persistent 

toxic substance. TrAC - Trends Anal. Chem. 119, 2019, 115624. 

4.BHADRA, S., KHASTGIR, D., SINGHA, N. K., LEE, J. H. Progress in preparation, processing and 

applications of polyaniline. Prog. Polym. Sci. 34, 2009, 783–810. 

5.MANDIĆ, Z., ROKOVIĆ, M. K., POKUPČIĆ, T. Polyaniline as cathodic material for electrochemical 

energy sources. The role of morphology. Electrochim. Acta 54, 2009, 2941–2950. 

6.SABZI, R. E., REZAPOUR, K., SAMADI, N. Polyaniline-multi-wall-carbon nanotube nanocomposites as 

a dopamine sensor. J. Serbian Chem. Soc. 75, 2010, 537–549. 

7.NGUYEN, V. H., SHIM, J. J. Green synthesis and characterization of carbon nanotubes/polyaniline 

nanocomposites. J. Spectrosc. 2015, 2015,. 

8.WANG, Z., LIU, E., GU, D., WANG, Y. Glassy carbon electrode coated with polyaniline-functionalized 

carbon nanotubes for detection of trace lead in acetate solution. Thin Solid Films 519, 2011, 5280–5284. 

9.CURSARU POPESCU, L. M., PLAIASU, A. G., DUCU, C. M., PITICESCU, R. M., TUDOR, I. A. Carbon 

Nanotube/Polyaniline Composite Films Prepared by Hydrothermal- Electrochemical Method for 

Biosensor Applications. Proc. Int. Semicond. Conf. CAS 2018-Octob, 2018, 249–252. 

10.THI MAI HOA, L. Characterization of multi-walled carbon nanotubes functionalized by a mixture of 

HNO3/H2SO4. Diam. Relat. Mater. 89, 2018, 43–51. 

11.RUI, M., JIANG, Y., ZHU, A. Sub-micron calcium carbonate as a template for the preparation of 

dendrite-like PANI/CNT nanocomposites and its corrosion protection properties. Chem. Eng. J. 385, 

2020,. 

12.PITICESCU, R. M., PITICESCU, R. R., TALOI, D., BADILITA, V. Hydrothermal synthesis of ceramic 

nanomaterials for functional applications. Nanotechnology 14, 2003, 312–317. 

13.KUMAR, D., CHANDRA, R. Thermal behaviour of synthetic metals: Polyanilines. Indian J. Eng. Mater. 

Sci. 8, 2001, 209–214. 

14.BRAZACA, L. C., RIBOVSKI, L., JANEGITZ, B. C., ZUCOLOTTO, V. Nanostructured materials and 

nanoparticles for point of care (POC) medical biosensors. Medical Biosensors for Point of Care (POC) 

Applications vol. 7 (Elsevier Ltd, 2017). 

15.MATEOS, M. ET AL. Comprehensive Study of Poly(2,3,5,6-tetrafluoroaniline): From Electrosynthesis 

to Heterojunctions and Ammonia Sensing. ACS Appl. Mater. Interfaces 10, 2018, 19974–19986. 

16.MONDAL, S., SANGARANARAYANAN, M. V. Permselectivity and thickness-dependent ion transport 

properties of overoxidized polyaniline: A mechanistic investigation. Phys. Chem. Chem. Phys. 18, 2016, 

30705–30720. 

17.JAMADADE, V. S., DHAWALE, D. S., LOKHANDE, C. D. Studies on electrosynthesized leucoemeraldine, 

emeraldine and pernigraniline forms of polyaniline films and their supercapacitive behavior. Synth. Met. 

160, 2010, 955–960. 

18.SHABIR HUSSEIN SOMJEE RAJAN, Z. Electrochemical Characterisation Methodology. 2019, 1–6. 

 
Manuscript received: 09.09.2020 

 

https://revmaterialeplastice.ro/

